Homesessive Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Narcissistic number - Wikipedia

    en.wikipedia.org/wiki/Narcissistic_number

    In number theory, a narcissistic number (also known as a pluperfect digital invariant (PPDI), an Armstrong number (after Michael F. Armstrong) or a plus perfect number) in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.

  3. Kaprekar's routine - Wikipedia

    en.wikipedia.org/wiki/Kaprekar's_routine

    Kaprekar's routine. In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. Each iteration starts with a number, sorts the digits into descending and ascending order, and calculates the difference between the two new numbers. As an example, starting with the number 8991 in ...

  4. Mersenne prime - Wikipedia

    en.wikipedia.org/wiki/Mersenne_prime

    Mersenne primes M p are closely connected to perfect numbers. In the 4th century BC, Euclid proved that if 2 p − 1 is prime, then 2 p − 1 (2 p − 1) is a perfect number. In the 18th century, Leonhard Euler proved that, conversely, all even perfect numbers have this form. This is known as the Euclid–Euler theorem.

  5. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    This method requires memorization of the squares of the one-digit numbers 1 to 9. The square of mn, mn being a two-digit integer, can be calculated as 10 × m(mn + n) + n 2. Meaning the square of mn can be found by adding n to mn, multiplied by m, adding 0 to the end and finally adding the square of n. For example, 23 2: 23 2 = 10 × 2(23 + 3 ...

  6. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    Perfect number. In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

  7. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    For example, squaring the number "1111" yields "1234321", which can be written as "01234321", an 8-digit number being the square of a 4-digit number. This gives "2343" as the "random" number. Repeating this procedure gives "4896" as the next result, and so on. Von Neumann used 10 digit numbers, but the process was the same.

  8. Palindromic number - Wikipedia

    en.wikipedia.org/wiki/Palindromic_number

    Palindromic number. A palindromic number (also known as a numeral palindrome or a numeric palindrome) is a number (such as 16461) that remains the same when its digits are reversed. In other words, it has reflectional symmetry across a vertical axis. The term palindromic is derived from palindrome, which refers to a word (such as rotor or ...

  9. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 22 − 1.